Search results for "many-body perturbation theory"

showing 9 items of 9 documents

Many-body perturbation theory calculations using the yambo code

2019

Abstract yambo is an open source project aimed at studying excited state properties of condensed matter systems from first principles using many-body methods. As input, yambo requires ground state electronic structure data as computed by density functional theory codes such as Quantum ESPRESSO and Abinit. yambo’s capabilities include the calculation of linear response quantities (both independent-particle and including electron–hole interactions), quasi-particle corrections based on the GW formalism, optical absorption, and other spectroscopic quantities. Here we describe recent developments ranging from the inclusion of important but oft-neglected physical effects such as electron–phonon i…

BETHE-SALPETER EQUATION02 engineering and technology01 natural sciencesSoftwarereal-time dynamicsGeneral Materials Sciencequasi-particleCondensed Matter - Materials Scienceparallelismelectron-phononreal-time dynamicComputational Physics (physics.comp-ph)021001 nanoscience & nanotechnologySupercomputerMANY-BODY PERTURBATION THEORYCondensed Matter Physicsbethe-salpeter-equationoptical-propertiesoptical propertietemperature-dependence[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]User interface0210 nano-technologyGround statePhysics - Computational Physicsoptical propertiesmonte-carloMaterials scienceExploitFOS: Physical sciencesabinitSettore FIS/03 - Fisica della MateriaComputational scienceKerr effect0103 physical scienceskerr effect010306 general physicselectronic excitationsTHEORETICAL SPECTROSCOPYpolarizationspin and spinorsbusiness.industrysoftwareMaterials Science (cond-mat.mtrl-sci)Rangingelectronic structureABINITInterfacingelectron-phonon; electronic structure; Kerr effect; optical properties; parallelism; real-time dynamics; spin and spinorsbusinessabsorption
researchProduct

Partial self-consistency and analyticity in many-body perturbation theory: Particle number conservation and a generalized sum rule

2016

We consider a general class of approximations which guarantees the conservation of particle number in many-body perturbation theory. To do this we extend the concept of $\Phi$-derivability for the self-energy $\Sigma$ to a larger class of diagrammatic terms in which only some of the Green's function lines contain the fully dressed Green's function $G$. We call the corresponding approximations for $\Sigma$ partially $\Phi$-derivable. A special subclass of such approximations, which are gauge-invariant, is obtained by dressing loops in the diagrammatic expansion of $\Phi$ consistently with $G$. These approximations are number conserving but do not have to fulfill other conservation laws, such…

Conservation lawConservation of energyapproximationsStrongly Correlated Electrons (cond-mat.str-el)ta114Particle numberparticle number conservationFOS: Physical sciencesSigma02 engineering and technologymany-body perturbation theoryGreen's function021001 nanoscience & nanotechnology01 natural sciencesCondensed Matter - Strongly Correlated ElectronsContinuity equationQuantum mechanics0103 physical sciencesSum rule in quantum mechanics010306 general physics0210 nano-technologyFermi gasAnderson impurity modelMathematical physicsMathematics
researchProduct

Approximate energy functionals for one-body reduced density matrix functional theory from many-body perturbation theory

2018

We develop a systematic approach to construct energy functionals of the one-particle reduced density matrix (1RDM) for equilibrium systems at finite temperature. The starting point of our formulation is the grand potential $\Omega [\mathbf{G}]$ regarded as variational functional of the Green's function $G$ based on diagrammatic many-body perturbation theory and for which we consider either the Klein or Luttinger-Ward form. By restricting the input Green's function to be one-to-one related to a set on one-particle reduced density matrices (1RDM) this functional becomes a functional of the 1RDM. To establish the one-to-one mapping we use that, at any finite temperature and for a given 1RDM $\…

Grand potentialSolid-state physicsComplex systemFOS: Physical sciencesdensity matrix functional theory01 natural sciencesCondensed Matter - Strongly Correlated Electronssymbols.namesakePhysics - Chemical Physics0103 physical sciencesSDG 7 - Affordable and Clean Energy010306 general physicsMathematical physicsEnergy functionalChemical Physics (physics.chem-ph)PhysicsQuantum Physics/dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energyStrongly Correlated Electrons (cond-mat.str-el)010304 chemical physicstiheysfunktionaaliteoriamany-body perturbation theory16. Peace & justiceCondensed Matter PhysicsStationary pointElectronic Optical and Magnetic MaterialsCondensed Matter - Other Condensed Matterapproximate energy functionalssymbolsReduced density matrixapproksimointiQuantum Physics (quant-ph)Hamiltonian (quantum mechanics)Ground stateOther Condensed Matter (cond-mat.other)The European Physical Journal B
researchProduct

Spinorial formulation of the GW-BSE equations and spin properties of excitons in two-dimensional transition metal dichalcogenides

2021

In many paradigmatic materials, such as transition metal dichalcogenides, the role played by the spin degrees of freedom is as important as the one played by the electron-electron interaction. Thus an accurate treatment of the two effects and of their interaction is necessary for an accurate and predictive study of the optical and electronic properties of these materials. Despite the fact that the GW-BSE approach correctly accounts for electronic correlations, the spin-orbit coupling effect is often neglected or treated perturbatively. Recently, spinorial formulations of GW-BSE have become available in different flavors in material-science codes. However, an accurate validation and comparis…

PhysicsWork (thermodynamics)Settore FIS/03ExcitonDegrees of freedom (physics and chemistry)02 engineering and technology021001 nanoscience & nanotechnologyCoupling (probability)01 natural sciencesPartícules (Física nuclear)Coupling effectTransition metalQuantum mechanics0103 physical sciencesmany-body perturbation theory non collinear spin spin-orbit coupling Hedin's equations GW BSE DFT MoS2 electronic properties optical properties010306 general physics0210 nano-technologyMaterialsMixing (physics)Spin-½
researchProduct

Excitons in few-layer hexagonal boron nitride: Davydov splitting and surface localization

2018

Hexagonal boron nitride (hBN) has been attracting great attention because of its strong excitonic effects. Taking into account few-layer systems, we investigate theoretically the effects of the number of layers on quasiparticle energies, absorption spectra, and excitonic states, placing particular focus on the Davydov splitting of the lowest bound excitons. We describe how the inter-layer interaction as well as the variation in electronic screening as a function of layer number $N$ affects the electronic and optical properties. Using both \textit{ab initio} simulations and a tight-binding model for an effective Hamiltonian describing the excitons, we characterize in detail the symmetry of t…

ab-initio many-body perturbation theoryAb initio02 engineering and technology01 natural sciences[SPI.MAT]Engineering Sciences [physics]/MaterialsTight bindingtight-bindingGeneral Materials ScienceOPTICAL ABSORPTIONWave functionmedia_commonPhysicsCondensed Matter - Materials ScienceCondensed matter physics021001 nanoscience & nanotechnologyCondensed Matter PhysicsCondensed Matter::Mesoscopic Systems and Quantum Hall Effect: Physique [G04] [Physique chimie mathématiques & sciences de la terre]Mechanics of MaterialsMATERIAUX 2DTIGHT-BINDINGQuasiparticlesymbols0210 nano-technologyHamiltonian (quantum mechanics)excitonsAbsorption spectroscopyExcitonmedia_common.quotation_subject: Physics [G04] [Physical chemical mathematical & earth Sciences]HEXAGONAL BORON NITRIDEFOS: Physical sciencesEXCITONAsymmetryBNsymbols.namesakeCondensed Matter::Materials ScienceFIRST-PRINCIPLES CALCULATIONS0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)hexagonal boron nitride010306 general physicsCondensed Matter::Quantum GasesCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed Matter::OtherEXCITONSMechanical EngineeringMaterials Science (cond-mat.mtrl-sci)Davydov splittingGeneral Chemistry
researchProduct

Time-dependent screening explains the ultrafast excitonic signal rise in 2D semiconductors

2020

We calculate the time evolution of the transient reflection signal in an MoS$_2$ monolayer on a SiO$_2$/Si substrate using first-principles out-of-equilibrium real-time methods. Our simulations provide a simple and intuitive physical picture for the delayed, yet ultrafast, evolution of the signal whose rise time depends on the excess energy of the pump laser: at laser energies above the A- and B-exciton, the pump pulse excites electrons and holes far away from the K valleys in the first Brillouin zone. Electron-phonon and hole-phonon scattering lead to a gradual relaxation of the carriers towards small $\textit{Active Excitonic Regions}$ around K, enhancing the dielectric screening. The acc…

ab-initio many-body perturbation theoryMaterials scienceExciton: Physics [G04] [Physical chemical mathematical & earth Sciences]General Physics and AstronomyFOS: Physical sciences02 engineering and technology010402 general chemistry01 natural sciencesSignalCondensed Matter::Materials ScienceMonolayerGeneral Materials ScienceCondensed Matter - Materials Sciencebusiness.industryGeneral EngineeringTime evolutionMaterials Science (cond-mat.mtrl-sci)Computational Physics (physics.comp-ph)021001 nanoscience & nanotechnologytime-dependent spectroscopy0104 chemical sciencesReflection (mathematics)Semiconductor: Physique [G04] [Physique chimie mathématiques & sciences de la terre]OptoelectronicsTransient (oscillation)0210 nano-technologybusinessUltrashort pulsePhysics - Computational Physicsexciton-phonon couplingPhysics - OpticsOptics (physics.optics)
researchProduct

Computational and theoretical studies on lattice thermal conductivity and thermal properties of silicon clathrates

2016

The lattice thermal conductivity is usually an intrinsic property in the study of thermoelectricity. In particular, relatively low lattice thermal conductivity is usually a desired feature when higher thermoelectric efficiency is pursued. The mechanisms which lower the lattice thermal conductivity are not known in sufficient detail and deeper understanding about the phenomena is needed and if such understanding is achieved it can be used to design more efficient thermoelectric materials. In this thesis, the lattice thermal conductivity and other thermal properties of several silicon clathrates, which are known to be promising candidates for the thermoelectric applications, are studied by theoreti…

clathratespiiphononsmany-body perturbation theorykiteetCondensed Matter::Materials Sciencehilarakenneklatraatitpuolijohteetlämmön johtuminenthermal conductivityGreen's functionslattice dynamicslämpösähköiset materiaalitlämpölaajeneminenthermal expansionfononit
researchProduct

Many-body Green's function theory for electron-phonon interactions: ground state properties of the Holstein dimer

2015

We study ground-state properties of a two-site, two-electron Holstein model describing two molecules coupled indirectly via electron-phonon interaction by using both exact diagonalization and self-consistent diagrammatic many-body perturbation theory. The Hartree and self-consistent Born approximations used in the present work are studied at different levels of self-consistency. The governing equations are shown to exhibit multiple solutions when the electron-phonon interaction is sufficiently strong whereas at smaller interactions only a single solution is found. The additional solutions at larger electron-phonon couplings correspond to symmetry-broken states with inhomogeneous electron de…

ground state propertiesGeneral Physics and AstronomyFOS: Physical sciences02 engineering and technology53001 natural sciencesCondensed Matter - Strongly Correlated Electronssymbols.namesakeQuantum mechanics0103 physical sciencesSymmetry breakingPhysical and Theoretical ChemistryBorn approximationPerturbation theory010306 general physicsPhysicsBipolaronta114Strongly Correlated Electrons (cond-mat.str-el)many-body perturbation theoryHartree540021001 nanoscience & nanotechnologySymmetry (physics)3. Good healthGreen's functionelectron-phonon interactionsymbols0210 nano-technologyGround state
researchProduct

Application of time-dependent many-body perturbation theory to excitation spectra of selected finite model systems

2016

In this thesis, an approximate method introduced to solve time-dependent many-body problems known as time-dependent many-body perturbation theory is studied. Many-body perturbation theory for interacting electrons and phonons is reviewed. In particular, the electron propagator G and an unconventional two-component phonon propagator, which satisfy coupled integral Dyson equations, are introduced. In practice, the associated integral kernels known as the electron Σ and phonon self-energies need to be approximated. The conserving approximations known as the Hartree (-Fock) and the first and second Born approximations, which respect the continuity equation between the electron density and curren…

numeeriset menetelmätmany-body problemsmany-body theoryspektroskopiaGreenin funktioGreen's functionmonen kappaleen teoriaelektronittime-dependent many-body perturbation theoryaikariippuva monihiukkashäiriöteoriaelectron-phonon interactionkiinteän olomuodon fysiikkakvanttimekaniikkaexcitation spectraapproksimointifononit
researchProduct